Посмотреть на Яндекс.Фотках
Ориентировочные соотношения основных размеров для расчета резонансной трубы: L3 = 0-0,4L2, L4 = 0,15-0,3L7, d3 = 0,3d1, d2/d1= 1,6-3,0 Общая длина трубы от кромки выхлопного окна до середины обратного конуса Lд ~ 34f/n, где f - продолжительность фазы выхлопа, в градусах, n - заданное число оборотов двигателя, в об/мин.
Красной линией показан профиль сечения реальной дудки.
Первая, цилиндрическая часть, непосредственно присоединяемая к выхлопному патрубку двигателя (выпускная труба) служит для точной настройки резонансных характеристик выпускной системы в целом.
Вторая часть, прямой конус, диффузор (иногда эту часть называют - мегафон), обеспечивает условие плавного расширения выхлопных газов, что необходимо для уменьшения турбулентных потерь, формирования плоского фронта расширяющихся газов, и некоторого снижения шума.
Третья часть, центральный цилиндр, служит не только для дальнейшего расширения выхлопных газов, но так же, как и выпускная труба, участвует в "настройке" дудки в резонанс.
Четвертая часть, обратный конус, или конфузор, служит отражательной стенкой для волны выхлопных газов.
Пятая, цилиндрическая часть (выходная труба) глушителя соединяет полость глушителя с атмосферой.
Работает резонансная труба следующим образом. В момент начала фазы выхлопа из цилиндра, через выхлопное окно и выпускную трубу в полость глушителя устремляется поток отработанных газов. В диффузоре этот поток расширяется, теряет скорость и начинает интенсивно остывать, что приводит к еще большей потери потенциальной энергии газового потока. Фронт давления, движущийся перед фронтом расширяющихся выхлопных газов, проходит центральный цилиндр глушителя, достигает стенок конфузора, отражается от них, и начинает двигаться в обратном направлении. Через определенное время этот фронт давления попадает снова в диффузор, затем в выхлопную трубу, и к моменту завершения фазы выхлопа, через еще открытое выхлопное окно, проникает обратно в цилиндр двигателя, увеличивая в нем эффективное давление.
Таким образом, фронт давления совершает колебательные движения, период которых определяется формой и геометрическими размерами резонансной трубы. Как уже было сказано, при совпадении частоты резонанса трубы и частоты вращения коленвала возникает общий резонанс системы и стоячая волна давления, длина которой, грубо говоря, в два раза больше длины резонансной трубы. Поэтому такие системы и называют полуволновыми резонансными трубами.
При этом сами выхлопные газы не прекращают своего движения в сторону выходной трубы и далее в атмосферу, а лишь изменяется их скорость и характер движения - из пульсирующего оно переходит в поступательное. Никакого возвратно-поступательного движения газовой смеси в области выхлопного окна нет, точно так же, как нет и перемещения воздуха при распространении в нем обычных звуковых колебаний.
Выхлопные резонансные трубы (как и любая другая колебательная система) имеют еще один важный параметр - добротность. Добротность дудки определяет тот диапазон оборотов двигателя, в котором эта дудка может работать, как принято говорить - включается, т.е. входит в резонанс с двигателем. Чем выше добротность дудки, тем уже диапазон оборотов двигателя, в котором дудка может запеть, но тем большую прибавку к мощности двигателя можно ожидать от этого устройства. Обычно дудка настраивается на частоту, несколько превышающую частоту вращения коленвала двигателя при работе без глушителя.
Вхождение в резонанс такой системы происходит в два этапа: сначала двигатель как бы тянет за собой дудку, постепенно увеличивая частоту общих колебаний системы двигатель - резонансный глушитель. После того, как эта частота становится близка частоте резонанса дудки, она включается в работу, и начинает "подтягивать" обороты двигателя уже к частоте своего резонанса, т.е. раскручивает его.
Добротность дудки во многом зависит от угла раскрыва обратного конуса: чем больше этот угол, тем большую добротность будет иметь выхлопная система. Если обратный конус (конфузор) заменить простой стенкой (блендой), то такая труба будет иметь максимальную добротность, т.е. сможет работать только на каких-то одних, строго определенных, оборотах коленвала двигателя, но будет выпадать из резонанса при малейших изменениях условий работы - нагрузки, температуры воздуха, состава горючей смеси, и т.д. и т.п.
Сразу скажу: невозможно создать такой глушитель, который бы увеличивал мощность двигателя во всем диапазоне оборотов коленвала. Законы природы и физики не позволяют сделать этого. Можно лишь изменить характер зависимости мощности мотора от оборотов коленвала. Следовательно, чем большую пиковую мощность развивает мотор на максимальных оборотах благодаря применению резонансного глушителя, тем меньшую мощность он будет способен отдать во всех других режимах работы.
Пиковые дудки, предназначенные для экстремальных режимов работы двигателей, имеют высокую добротность, в силу чего очень капризны в настройке и в работе.
Расчет, изготовление и настройка такого устройства дело весьма кропотливое, и не поддающееся простому математическому описанию. На сегодня не существует законченной теории работы резонансных глушителей, позволяющей выполнять прикладное моделирование резонансных выхлопных труб по заданным параметрам. Все формулы, размеры, параметры и оценки таких устройств, встречающиеся в литературе, являются эмпирическими, т.е. полученными путем длительных экспериментов. Учитывая, что в работе участвует не только сама резонансная труба, но и двигатель, приходится принимать во внимание очень многие факторы - от размеров и материала самой трубы и каждой отдельной ее части, до степени сжатия двигателя и длительности фаз всех процессов, происходящих внутри него. Кроме того на характер работы резонансной трубы оказывают большое влияние и внешние условия, прежде всего - атмосферное давление, температура и влажность воздуха.
В интернете есть несколько сайтов с описанием методик расчета и настройки резонансных труб. Одно из лучших автоматизированных решений расчета резонансных труб можно увидеть на сайте Мартина Хепперле (Martin Hepperle), посвященном гоночным радиоуправляемым моделям класса F3D. (685)
Разумеется, эта программа предназначена прежде всего для демонстрации общих зависимостей резонансных свойств дудки от параметров двигателя и его рабочих оборотов, и не может претендовать на роль точного математического инструмента.